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4.3.1 Harmonic Oscillator in Three
Dimensions

F = —kr

Accordingly, the deferential equation of motion is simply
expressed as

d?r ‘{
m F = —kr

In the case of three-dimensional motion, the deferential equation of
motion is equivalent to the three equations

mia = —kx
my = —ky (4.50)

mz = —kz




xr = Acos(wt + «v)

y = Bcos(wt + [3) (4.51) As ‘q: = v/ k/m ‘
z = Ccos(wt + )

4.3.3 Non-isotropic Oscillator in Three-Dimensional

The previous discussion considered the motion of the isotropic oscillator,
wherein the restoring force is independent on the direction of the
displacement. If the magnitudes of the components of the restoring force

depend on the direction of the displacement, we have the case of the non-
isotropic oscillator

mx = —kix
miy = —koy (4.52)
mz = —kjyz

Here we have a case of three different frequencies of oscillation.

w1 = Vki/m , wy = \/ko/m and wy = /k3/m and the motion is

given by the solutions



x = Acos(wit + «)
y = Bcos(wst + )

z = C'cos(wst + )

(4.53)

Again, the six constants of integration in the above equations are

determined from the initial conditions.

4.3.4 Energy Considerations:

In the preceding chapter we showed that the potential energy function
of the one dimensional harmonic oscillator is quadratic in the

displacement, V (x) = %kxz. For the general three-dimensional case,

It Is easy to verify that

; . 5. Loa . Ly

(4.54)
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Example (5)

A particle of mass m moves in two dimensions under the following

potential energy function:
1
V(r) = Ek(x2 + 4y?)

Find the resulting motion, given the initial conditionatt =0, x =a,y =0,x =

0andy = vo

Solution: This is an isotropic oscillator potential. The force function is

ThUS F - _VV IIIII'II* F: —kai—4ky] =m'i':

vy
mi+kx=0 mij +4ky = 0 '

The x-motion has angular frequency @ = (k/m)m, while the y-motion has angular fre-
quency just twice that, namely, @, = (4k/m)"* = 2. We shall write the general solution
in the form




x = A; cos®t+ B, sin @t
y = A, cos2wt+ B, sin 20

To use the initial condition we must first differentiate with respect to t to find the
general expression for the velocity components:

1 =—A,@ sinwt + B,® cos wt
y =—2A,@ sin 20t + 2B,@ cos2wt

Thus, at t = 0, we see that the above equations for the components of position and
velocity reduce to

[a=A 0=A4, 0=B,o v, = 2B,0 |

These equations give directly the values of the amplitude coefficients, A; =a, Ay = B, =0,
and B, = vy/2, so the final equations for the motion are

X=a coswt
() )
y = —- sin 20¢
20 8




The path is a Lissajous figure having the shape of a figure-eight as shown in Figure 4.4.3.
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